Lanxess’ Tepex helps German carmaker reduce car engine undertray weight

The company’s continuous-fibre-reinforced thermoplastic composite Tepex dynalite when combined with a DLFT mass creates a robust thermoplastic composite construction

By Autocar Pro News Desk calendar 07 Nov 2017 Views icon5981 Views Share - Share to Facebook Share to Twitter Share to LinkedIn Share to Whatsapp
Lanxess’ Tepex helps German carmaker reduce car engine undertray weight

In regions where road surfaces are poor, vehicle underbodies are subjected to tough conditions, having to withstand the impact of stones thrown up from the surface and, in extreme cases, even direct contact with the ground.

A major German car manufacturer is therefore equipping the first vehicles of various model series that are delivered to countries with poor road infrastructure with an engine undertray made of a particularly robust thermoplastic composite construction. This consists of the continuous-fibre-reinforced thermoplastic composite Tepex dynalite from specialty chemicals company Lanxess combined with a DLFT (direct long fibre thermoplastic) mass.

“Thanks to the toughness and tensile strength that Tepex delivers, this composite design is significantly more resistant to impacts and damage than previous material solutions,” explains Tepex application developer Harri Dittmar. The new component also results in significant weight savings. The engine tray in the Tepex-DLFT composite design is over 60 percent lighter than an equivalent component made of steel, and up to 20 percent lighter when the new material is substituted for aluminum.


Can be used in a range of vehicle models

The engine undertray is manufactured by GSI Deutschland GmbH, based in Hörgertshausen, Germany. The component solution with Tepex and DLFT was developed by the Polytec Group, headquartered in Hörsching in Austria, in collaboration with Lanxess. The underbody protection was previously made of a polypropylene-based composite design consisting of a glass-mat-reinforced thermoplastic system (GMT) and an additional fabric-reinforced GMT; before that, sheet steel was used. 

The new underbody protection is manufactured in moulds as used, for example, for GMT and its related materials. The difference is that a Tepex dynalite 104-RG601 insert with a wall thickness of one millimetre is used. This comprises a glass fibre fabric, containing 47 percent continuous glass fiber rovings by volume, and a polypropylene matrix. It is heated up while the required volume of DLFT mass (containing glass fibres 5 to 50 millimetres long) is extruded. Both materials are then shaped in a compression mold. Components are thus produced that have a Tepex surface on the engine side – the side subjected to tensile load. “Our material solution is more cost-effective than the previous composite variant because DLFT is a direct extrudate that can be produced at particularly low cost and makes up the larger part of the component’s volume,” says Henrik Plaggenborg, head of Technical Marketing Business Development Tepex Automotive.


An alternative to steel and aluminium

Lanxess is confident that Tepex will become an increasingly popular solution for underbody protection of vehicles. Many car manufacturers currently use steel or aluminium for components of this kind, which presents certain disadvantages, including with regarding to weight. In electric vehicles, comparatively heavy aluminium panels have been a particularly popular solution for protecting the underside of battery systems. “Using Tepex in combination with DLFT produces considerably lighter, more robust components that also provide more effective sound insulation,” Dittmar sums up.

Tepex dynalite is developed and produced by the LANXESS subsidiary Bond-Laminates GmbH-based in Brilon, Germany. In addition to underbody protection, it is also shaped and back-injected to make seat backs, module supports, battery consoles, front-end components, brake pedals and bumper crossbars. Due to the growing potential uses for Tepex in lightweight automotive engineering, Lanxess has set up a dedicated project group that supports industry worldwide through all stages of Tepex component development, right up to production launch. 

 

 

RELATED ARTICLES
Continental pushes the SDV tech envelope with cross-domain high-performance computer

auther Autocar Pro News Desk calendar16 May 2024

The SDV technology car utilises the cloud-based Continental Automotive Edge Framework (CAEdge), which connects the vehic...

Bosch and Ligier to showcase 280kph hydrogen race car at 24 Hours of Le Mans in June

auther Autocar Pro News Desk calendar16 May 2024

The Ligier JS2 RH2 will participate in the world premiere demo lap reserved for hydrogen-powered racing cars on June 15 ...

Renault to trial Level 4 autonomous public transport at Roland-Garros 2024

auther Autocar Pro News Desk calendar16 May 2024

As a premium partner of the tennis tournament, Renault along with WeRide is setting up a trial of electric and autonomou...