Purdue University researchers develop superstrong alloy for application in automobiles

The team claims that the high-strength aluminium alloy is durable and lightweight and is just as strong or possibly stronger than, stainless steel.

Autocar Pro News Desk By Autocar Pro News Desk calendar 29 Jun 2018 Views icon4105 Views Share - Share to Facebook Share to Twitter Share to LinkedIn Share to Whatsapp
Qiang Li, a doctoral student and member of the research team, makes a deposition program on the operational computer, and Yifan Zhang, a professor in Purdue’s School of Materials Engineering, loads sa

Qiang Li, a doctoral student and member of the research team, makes a deposition program on the operational computer, and Yifan Zhang, a professor in Purdue’s School of Materials Engineering, loads sa

Researchers from the Purdue University have claimed that they have developed a superstrong material that may change some manufacturing processes for the automobile and aerospace industries. The Purdue team, led by Xinghang Zhang, a professor in Purdue’s School of Materials Engineering, created high-strength aluminium (AI) alloy coatings.

According to Zhang, there is an increasing demand for such materials because of their advantages for automakers and aerospace industries. “We have created a very durable and lightweight aluminium alloy that is just as strong as, and possibly stronger than, stainless steel. Our aluminium alloy is lightweight and provides flexibility that stainless steel does not in many applications,” Zhang said.

Another member from the Purdue team, Yifan Zhang, a graduate student in materials engineering, said the aluminium alloy could be used for making wear- and corrosion-resistant automobile parts such as engines and coatings for optical lenses for specialised telescopes in the aerospace industry.

The researchers create the super-strong alloy by introducing ‘stacking faults’, or distortions in the crystal structure of aluminium, the distortions can lead to so-called nanotwins and complex stacking faults, such as 9R phase.

“The 9R type of stacking fault is usually rare in aluminium,” said Qiang Li, a doctoral student and member of the research team. “We introduced both twin boundaries and 9R phase within nanograins to the lightweight Al alloys that are both strong and highly deformable under stresses. Besides coating applications, we are also looking into scale-up potentials of bulk high-strength Al alloys.”

The team also created a way to develop the superstrong alloy coatings by introducing iron or Ti atoms into aluminium’s crystal structure. The resulting ‘nanotwinned’ aluminium-iron alloy coatings proved to be one of the strongest aluminium alloys ever created, comparable to high-strength steels, claimed the team. The findings were published recently in Advanced Materials and Scripta Materialia.

The Purdue Office of Technology Commercialisation has helped secured a patent for the technology and states that it is available for licensing. 

 

RELATED ARTICLES
Lamborghini unveils Urus SE ahead of Auto China 2024

auther Autocar Pro News Desk calendar24 Apr 2024

Electric-only range of 60km helps reduce emissions by 80%.

ZF to display next-gen e-axle for low-floor city buses at Busworld Turkiye 2024

auther Autocar Pro News Desk calendar24 Apr 2024

The AxTrax 2 LF is available with a continuous output of up to 360 kW and a peak torque of up to 37,300 Nm.

Daimler Buses and BMZ Poland to develop next-gen NMC4 electric bus batteries

auther Autocar Pro News Desk calendar24 Apr 2024

The new battery generation NMC4 – succeeding the current NMC3 technology – will combine high energy density, resulting i...